On Smoluchowski Equations for Coagulation Processes with Multiple Absorbing States
نویسندگان
چکیده
منابع مشابه
Numerical Simulation of the Smoluchowski Coagulation Equation
The Smoluchowski coagulation equation is a mean-field model for the growth of clusters (particles, droplets,...) by binary coalescence, that is, the driving growth mechanism is the merger of two particles into a single one. In the simple situation where each particle is fully identified by its volume, it describes the dynamics of the volume distribution function f = f(t, x) ≥ 0 of particles of ...
متن کاملAsymptotics for Scaled Kramers-Smoluchowski Equations
We offer fairly simple and direct proofs of the asymptotics for the scaled Kramers-Smoluchowski equation in both one and higher dimensions. For the latter, we invoke the sharp asymptotic capacity asymptotics of Bovier–Eckhoff–Gayrard–Klein [B-E-G-K].
متن کاملCoagulation and diffusion: a probabilistic perspective on the Smoluchowski PDE
The Smoluchowski coagulation-diffusion PDE is a system of partial differential equations modelling the evolution in time of mass-bearing Brownian particles which are subject to shortrange pairwise coagulation. This survey presents a fairly detailed exposition of the kinetic limit derivation of the Smoluchowski PDE from a microscopic model of many coagulating Brownian particles that was undertak...
متن کاملDust and self-similarity for the Smoluchowski coagulation equation
We establish the well-posedness of the Cauchy problem for the Smoluchowski coagulation equation in the homogeneous space L̇1 for a class of homogeneous coagulation rates of degree λ ∈ [0, 2). For any initial datum fin ∈ L̇1 we build a weak solution which conserves the mass when λ ≤ 1 and loses mass in finite time (gelation phenomena) when λ > 1. We then extend the existence result to a measure fr...
متن کاملScaling and the Smoluchowski equations.
The Smoluchowski equations, which describe coalescence growth, take into account combination reactions between a j-mer and a k-mer to form a (j+k)-mer, but not breakup of larger clusters to smaller ones. All combination reactions are assumed to be second order, with rate constants K(jk). The K(jk) are said to scale if K(lambda j,gamma k) = lambda(mu)gamma(nu)K(jk) for j < or = k. It can then be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monte Carlo Methods and Applications
سال: 2001
ISSN: 0929-9629,1569-3961
DOI: 10.1515/mcma.2001.7.1-2.203